### **Batching Computers and Scaling**

- Types of Batching Computers include:
  - Command-Batch Eagle/Alkon (see http://www.commandalkon.com)
  - Jonel-Archer (see http://www.jonel.com/readyMixBatch.htm)



**Batching Computer System** 

- Eagle by IPE, Batch-Tec, Matcon-Matic
- United and many others
- ManuFlo do not supply Batching Computers, but our equipment interfaces with computers in customer installations.
- Call ManuFlo if you are unsure as to the interface required.

- Pulse output rate to inputs of AC input PLC/computers must not exceed 12-15 Hz (12-15 pulses/sec).
- Any pulse rate faster than 12-15 Hz will cause overdose,
  as computer will start missing pulses due to AC input or scanning time.
- Relates to any 24 240 vac pulse inputs (Eagle/Alcon/Jonel etc).
- In your case at BGC Perth WA
- PMS80-I Magflow is flowing at 1200 Litres/min. (20 litres/sec)
- With 10 pulses/litre output
- To avoid computer input missing pulses and as a result overflow of water
  Set the UIC/A2 card on the following:-

$$H = 1, T = 0, U = 0$$

This will result in 2 litres/pulse (0.5 pulses/litre) going to computer input, Now set the computer input to match the same as above.

• Now do a calibration check, the Magflow amount batched, the computer display and actual volume collected should all near match. If not then we look at the measurement device.

## **Interface Cards - UIC - scaling**

Calibrating or scaling of pulse output signals is via 3 rotary select switches (numbered 0-9) marked Hundreds (H), Tens (T) and Units (U).

Use small flat-bladed screwdriver, insert into switch slot and turn arrow to desired number.

|                                                   |                     | ······ |
|---------------------------------------------------|---------------------|--------|
| HTU =                                             | input pulses/Litre  | x 5    |
|                                                   | output pulses/Litre |        |
|                                                   |                     |        |
| e.g. to convert 20 pulses/Litre to 1 pulse/Litre: |                     |        |
|                                                   |                     |        |
| HTU =                                             | 20 pulses/Litre     | x 5    |
|                                                   | 1 pulse/Litre       |        |
|                                                   |                     |        |
| HTU =                                             | 100 (i.e. H=1 T=0   | U=0)   |



## **Interface Cards - UIC - scaling**



For batching with water lines, the RPFS paddlewheel and Magflow flowmeters are primarily used. Scaling values (x10 input card standard):

#### **Final Calibration:**

- If the liquid collected is **more** than pulse value shown on computer screen, then **decrease** the rotary decade set value by the same % difference.
- If the liquid collected is **less** than pulse value shown on computer screen, then **increase** the rotary decade set value by the same % difference.
- Note: Final calibration can also be performed via computer software scaling.

| Rotary decade<br>value<br>H T U | Pulse output<br>rate |
|---------------------------------|----------------------|
| 050                             | 1 Litre /pulse       |
| 100                             | 2 Litres/pulse       |
| 200                             | 4 Litres/pulse       |
| 250                             | 5 Litres/pulse       |
| 500                             | 10 Litres/pulse      |
|                                 |                      |

### **Interface Cards - UIC**

Computer/PLC Flowmeter UIC The UIC **Universal Interface Card** provides:

• signal **scaling** and

• an isolation interface

to pulse flowmeter outputs, and re-transmits to PLC/computer inputs. Models available:

<u>UIC/A1</u>: 110-240 vac pulse switching via a triac opto

2) UIC/A2 24-250 vac pulse switching via a heavy duty triac opto

UIC/D : 5- 30 **VDC** NPN/PNP (sink/source) pulse switching via a 4N33 opto 3)





# Flowmeter – installation - wiring

• to avoid water ingress into electronics, ensure cable entry glands are secure and loop cable down.



- interface cards are available to scale output pulses.
- to avoid interference, use only shielded cable.
- make sure regulated only DC voltages used.